3.1143 \(\int \frac {\sqrt {\cos (c+d x)} (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x))}{\sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=473 \[ -\frac {\sqrt {a+b} \left (a^2 (-B)+4 a A b+4 b^2 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b^2 d}+\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{4 b d \sqrt {\cos (c+d x)}}+\frac {\sqrt {a+b} (B (a+2 b)+4 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b d}-\frac {(a-b) \sqrt {a+b} (a B+4 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 a b d}+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d} \]

[Out]

1/4*(4*A*b+B*a)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d/cos(d*x+c)^(1/2)+1/2*B*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+b*
cos(d*x+c))^(1/2)/d-1/4*(a-b)*(4*A*b+B*a)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(
1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d+1/4
*(4*A*b+(a+2*b)*B)*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/
2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d-1/4*(4*A*a*b-B*a^2+4*B*b^2)*
cot(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^
(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d

________________________________________________________________________________________

Rubi [A]  time = 1.48, antiderivative size = 473, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {3029, 3003, 3061, 3053, 2809, 2998, 2816, 2994} \[ -\frac {\sqrt {a+b} \left (a^2 (-B)+4 a A b+4 b^2 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b^2 d}+\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{4 b d \sqrt {\cos (c+d x)}}+\frac {\sqrt {a+b} (B (a+2 b)+4 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b d}-\frac {(a-b) \sqrt {a+b} (a B+4 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 a b d}+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(a*A + (A*b + a*B)*Cos[c + d*x] + b*B*Cos[c + d*x]^2))/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

-((a - b)*Sqrt[a + b]*(4*A*b + a*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[C
os[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])
/(4*a*b*d) + (Sqrt[a + b]*(4*A*b + (a + 2*b)*B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a
 + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]
))/(a - b)])/(4*b*d) - (Sqrt[a + b]*(4*a*A*b - a^2*B + 4*b^2*B)*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt
[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b
)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(4*b^2*d) + ((4*A*b + a*B)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(4*
b*d*Sqrt[Cos[c + d*x]]) + (B*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*d)

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3003

Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n)/
(f*(2*n + 3)), x] + Dist[1/(2*n + 3), Int[((c + d*Sin[e + f*x])^(n - 1)*Simp[a*A*c*(2*n + 3) + B*(b*c + 2*a*d*
n) + (B*(a*c + b*d)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n + 3) + B*(a*d + 2*b*c*n))*
Sin[e + f*x]^2, x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0
] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[n^2, 1/4]

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3053

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3061

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> -Simp[(C*Cos[e + f*x]*Sqrt[c + d*Sin[e
+ f*x]])/(d*f*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[1/(2*d), Int[(1*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d
*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + f*x]^2, x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c
+ d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
&& NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cos (c+d x)} \left (a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx &=\frac {\int \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \left (-a b B+b (A b+a B)+b^2 B \cos (c+d x)\right ) \, dx}{b^2}\\ &=\frac {B \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {\int \frac {a b^2 B+2 b^2 (2 a A+b B) \cos (c+d x)+b^2 (4 A b+a B) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{4 b^2}\\ &=\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {B \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {\int \frac {-a b^2 (4 A b+a B)+2 a b^3 B \cos (c+d x)+b^2 \left (4 a A b-a^2 B+4 b^2 B\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{8 b^3}\\ &=\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {B \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {\int \frac {-a b^2 (4 A b+a B)+2 a b^3 B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{8 b^3}+\frac {\left (4 a A b-a^2 B+4 b^2 B\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 b}\\ &=-\frac {\sqrt {a+b} \left (4 a A b-a^2 B+4 b^2 B\right ) \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d}+\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {B \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d}-\frac {(a (4 A b+a B)) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{8 b}+\frac {(a (4 A b+(a+2 b) B)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{8 b}\\ &=-\frac {(a-b) \sqrt {a+b} (4 A b+a B) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 a b d}+\frac {\sqrt {a+b} (4 A b+(a+2 b) B) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d}-\frac {\sqrt {a+b} \left (4 a A b-a^2 B+4 b^2 B\right ) \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d}+\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b d \sqrt {\cos (c+d x)}}+\frac {B \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.19, size = 1175, normalized size = 2.48 \[ \frac {B \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {-\frac {4 a (4 A b+3 a B) \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{b-a}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right )|-\frac {2 a}{b-a}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-4 a (8 a A+4 b B) \left (\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{b-a}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right )|-\frac {2 a}{b-a}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{b-a}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \Pi \left (-\frac {a}{b};\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right )|-\frac {2 a}{b-a}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )+2 (4 A b+a B) \left (\frac {i \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {a+b \cos (c+d x)} E\left (i \sinh ^{-1}\left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )|-\frac {2 a}{-a-b}\right ) \sec (c+d x)}{b \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {\frac {(a+b \cos (c+d x)) \sec (c+d x)}{a+b}}}+\frac {2 a \left (\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{b-a}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right )|-\frac {2 a}{b-a}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{b-a}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \Pi \left (-\frac {a}{b};\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right )|-\frac {2 a}{b-a}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )}{b}+\frac {\sqrt {a+b \cos (c+d x)} \sin (c+d x)}{b \sqrt {\cos (c+d x)}}\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(a*A + (A*b + a*B)*Cos[c + d*x] + b*B*Cos[c + d*x]^2))/Sqrt[a + b*Cos[c + d*x]],
x]

[Out]

(B*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*d) + ((-4*a*(4*A*b + 3*a*B)*Sqrt[((a + b)*Cot[
(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[
(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (
-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(8*a*A + 4*b*B
)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a
+ b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x
)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]
) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a
 + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Cs
c[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d
*x]])) + 2*(4*A*b + a*B)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sq
rt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c
+ d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c +
 d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[
Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt
[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[
c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a
/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(
b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])))/b + (Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*Sqrt[Cos[c + d
*x]])))/(8*d)

________________________________________________________________________________________

fricas [F]  time = 1.55, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fr
icas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B b \cos \left (d x + c\right )^{2} + A a + {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="gi
ac")

[Out]

integrate((B*b*cos(d*x + c)^2 + A*a + (B*a + A*b)*cos(d*x + c))*sqrt(cos(d*x + c))/sqrt(b*cos(d*x + c) + a), x
)

________________________________________________________________________________________

maple [B]  time = 0.46, size = 2055, normalized size = 4.34 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

1/4/d/(a+b*cos(d*x+c))^(1/2)*(-4*A*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*b^2-B*cos(d*x+c)^2*a^2-2*B*cos(d*x+
c)^4*b^2+2*B*cos(d*x+c)^2*b^2+B*cos(d*x+c)*a^2-4*A*cos(d*x+c)^3*b^2+4*A*cos(d*x+c)^2*b^2-8*A*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b
)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a*b-B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*a*b-2*B*sin(d*x
+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/
sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*a*b-4*A*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))
*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b+8*A
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin
(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a*b+2*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b
*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a^2-4*
A*cos(d*x+c)^2*a*b+4*A*cos(d*x+c)*a*b-3*B*cos(d*x+c)^3*a*b+B*cos(d*x+c)^2*a*b+2*B*cos(d*x+c)*a*b+2*B*sin(d*x+c
)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/s
in(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*a^2-8*A*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^
(1/2))*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b-4*A*Elli
pticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(
d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b+8*A*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x
+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b-B*sin(d*x+c)*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-
(a-b)/(a+b))^(1/2))*a*b-2*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b
))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b-4*A*EllipticE((-1+cos(d*x+c))/sin(d*x+
c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*b^2-8*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^
(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*b^2-B*sin(d*x+c)*(cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b
)/(a+b))^(1/2))*cos(d*x+c)*a^2+4*B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*cos(d*x+c)*b^2-8*B*sin(d*x+c)*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+
c),-1,(-(a-b)/(a+b))^(1/2))*b^2-B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c)
)/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2+4*B*sin(d*x+c)*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a
+b))^(1/2))*b^2)/sin(d*x+c)/b/cos(d*x+c)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B b \cos \left (d x + c\right )^{2} + A a + {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="ma
xima")

[Out]

integrate((B*b*cos(d*x + c)^2 + A*a + (B*a + A*b)*cos(d*x + c))*sqrt(cos(d*x + c))/sqrt(b*cos(d*x + c) + a), x
)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (B\,b\,{\cos \left (c+d\,x\right )}^2+\left (A\,b+B\,a\right )\,\cos \left (c+d\,x\right )+A\,a\right )}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(1/2)*(A*a + cos(c + d*x)*(A*b + B*a) + B*b*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^(1/2)*(A*a + cos(c + d*x)*(A*b + B*a) + B*b*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*A+(A*b+B*a)*cos(d*x+c)+b*B*cos(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________